723 research outputs found

    Characterisation and airborne deployment of a new counterflow virtual impactor inlet

    Get PDF
    A new counterflow virtual impactor (CVI) inlet is introduced with details of its design, laboratory characterisation tests and deployment on an aircraft during the 2011 Eastern Pacific Emitted Aerosol Cloud Experiment (E-PEACE). The CVI inlet addresses three key issues in previous designs; in particular, the inlet operates with: (i) negligible organic contamination; (ii) a significant sample flow rate to downstream instruments (∼15 l min^(−1)) that reduces the need for dilution; and (iii) a high level of accessibility to the probe interior for cleaning. Wind tunnel experiments characterised the cut size of sampled droplets and the particle size-dependent transmission efficiency in various parts of the probe. For a range of counter-flow rates and air velocities, the measured cut size was between 8.7–13.1 μm. The mean percentage error between cut size measurements and predictions from aerodynamic drag theory is 1.7%. The CVI was deployed on the Center for Interdisciplinary Remotely Piloted Aircraft Studies (CIRPAS) Twin Otter for thirty flights during E-PEACE to study aerosol-cloud-radiation interactions off the central coast of California in July and August 2011. Results are reported to assess the performance of the inlet including comparisons of particle number concentration downstream of the CVI and cloud drop number concentration measured by two independent aircraft probes. Measurements downstream of the CVI are also examined from one representative case flight coordinated with shipboard-emitted smoke that was intercepted in cloud by the Twin Otter

    Photocurrent response from vertically aligned single-walled carbon nanotube arrays

    Get PDF
    Vertically-aligned arrays of single walled carbon nanotubes were created on an optically transparent electrode (FTO glass) these arrays were found to exhibit a prompt current and voltage when exposed to light. These cells were then investigated by electrochemical impedance spectroscopy and found to exhibit a dampening of the recombination reaction over the first 24 hours. Symmetrical cell modeling was successful in simulating the behavior of normal cell architecture

    Observations of Sharp Oxalate Reductions in Stratocumulus Clouds at Variable Altitudes: Organic Acid and Metal Measurements During the 2011 E-PEACE Campaign

    Get PDF
    This work examines organic acid and metal concentrations in northeastern Pacific Ocean stratocumulus cloudwater samples collected by the CIRPAS Twin Otter between July and August 2011. Correlations between a suite of various monocarboxylic and dicarboxylic acid concentrations are consistent with documented aqueous-phase mechanistic relationships leading up to oxalate production. Monocarboxylic and dicarboxylic acids exhibited contrasting spatial profiles reflecting their different sources; the former were higher in concentration near the continent due to fresh organic emissions. Concentrations of sea salt crustal tracer species, oxalate, and malonate were positively correlated with low-level wind speed suggesting that an important route for oxalate and malonate entry in cloudwater is via some combination of association with coarse particles and gaseous precursors emitted from the ocean surface. Three case flights show that oxalate (and no other organic acid) concentrations drop by nearly an order of magnitude relative to samples in the same vicinity. A consistent feature in these cases was an inverse relationship between oxalate and several metals (Fe, Mn, K, Na, Mg, Ca), especially Fe. By means of box model studies we show that the loss of oxalate due to the photolysis of iron oxalato complexes is likely a significant oxalate sink in the study region due to the ubiquity of oxalate precursors, clouds, and metal emissions from ships, the ocean, and continental sources

    Channelling of hydrothermal fluids during the accretion and evolution of the upper oceanic crust: Sr isotope evidence from ODP Hole 1256D

    Get PDF
    ODP Hole 1256D in the eastern equatorial Pacific is the first penetration of a complete section of fast spread ocean crust down to the dike-gabbro transition, and only the second borehole to sample in situ sheeted dikes after DSDP Hole 504B. Here a high spatial resolution record of whole rock and mineral strontium isotopic compositions from Site 1256 is combined with core observations and downhole wireline geophysical measurements to determine the extent of basalt-hydrothermal fluid reaction and to identify fluid pathways at different levels in the upper ocean crust.The volcanic sequence at Site 1256 is dominated by sheet and massive lava flows but the Sr isotope profile shows only limited exchange with seawater. However, the upper margins of two anomalously thick (>25 m) massive flow sequences are strongly hydrothermally altered with elevated Sr isotope ratios and appear to be conduits of lateral low-temperature off-axis fluid flow. Elsewhere in the lavas, high 87Sr/86Sr are restricted to breccia horizons. Mineralised hyaloclastic breccias in the Lava-Dike Transition are strongly altered to Mg-saponite, silica and pyrite, indicating alteration by mixed seawater and cooled hydrothermal fluids. In the Sheeted Dike Complex 87Sr/86Sr ratios are pervasively shifted towards hydrothermal fluid values (~0.705). Dike chilled margins display secondary mineral assemblages formed during both axial recharge and discharge and have higher 87Sr/86Sr than dike cores, indicating preferential fluid flow along dike margins. Localised increases in 87Sr/86Sr in the Dike-Gabbro Transition indicates the channelling of fluids along the sub-horizontal intrusive boundaries of the 25 to 50 m-thick gabbroic intrusions, with only minor increases in 87Sr/86Sr within the cores of the gabbro bodies.When compared to the pillow lava-dominated section from Hole 504B, the Sr isotope measurements from Site 1256 suggest that the extent of hydrothermal circulation in the upper ocean crust may be strongly dependent on the eruption style. Sheet and massive flow dominated lava sequences typical of fast spreading ridges may experience relatively restricted circulation, but there may be much more widespread circulation through pillow lava-dominated sections. In addition, the Hole 1256D sheeted dikes display a much greater extent of Sr-isotopic exchange compared to dikes from Hole 504B. Because seawater-derived hydrothermal fluids must transit the dikes during their evolution to black smoker-type fluids, the different Sr-isotope profiles for Holes 504B and 1256D suggest there are significant variations in mid-ocean ridge hydrothermal systems at fast and intermediate spreading ridges, which may impact geochemical cycles of elements mobilised by fluid-rock exchange at different temperatures

    Vapor wall deposition in Teflon chambers

    Get PDF
    Teflon chambers are ubiquitous in studies of atmospheric chemistry. Secondary organic aerosol (SOA) formation can be underestimated, owing to deposition of SOA-forming vapors to the chamber wall. We present here an experimental protocol and a model framework to constrain the vapor–wall interactions in Teflon chambers. We measured the wall deposition rates of 25 oxidized organic compounds generated from the photooxidation of isoprene, toluene, α-pinene, and dodecane in two chambers that had been extensively used and in two new unused chambers. We found that the extent of prior use of the chamber did not significantly affect the sorption behavior of the Teflon films. Among the 25 compounds studied, the maximum wall deposition rate is exhibited by the most highly oxygenated and least volatile compounds. By optimizing the model output to the observed vapor decay profiles, we identified that the dominant parameter governing the extent of wall deposition of a compound is its wall accommodation coefficient (α_(wi)), which can be correlated through its volatility with the number of carbons and oxygens in the molecule. By doing so, the wall-induced deposition rate of intermediate/semi-volatile organic vapors can be reasonably predicted based on their molecular constituency. The extent to which vapor wall deposition impacts measured SOA yields depends on the competition between uptake of organic vapors by suspended particles and the chamber wall. The timescale associated with vapor wall deposition can vary from minutes to hours depending on the value of α_(w,i). For volatile and intermediate volatility organic compounds (small α_(w,i)), gas-particle partitioning will dominate wall deposition for typical particle number concentrations in chamber experiments. For compounds characterized by relatively large α_(w,i), vapor transport to particles is suppressed by competition with the chamber wall even with perfect particle accommodation
    corecore